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WETD—A Finite Element Time–Domain

Approach for Solving Maxwell’s Equations
Jin-Fa Lee, Member, IEEE

Abstract— A family of finite element time-domain methods,

WETD(@), is derived to solve the time-varying Maxwell’s equa-
tions. The proposed methodology is based upon the application of
the Faedo-Galerkin procedure and the use of the Whitney l-forms
as bases to result in an ordinary differential equation in time for
the electric field. Moreover, the resultant ordinary differential

equation is solved by employing central and/or backward dMfer-
ence approximations. Since the WETD methods presented here

are used in conjunction with tetrahedral finite element meshes,

it imposes no limitations on the problem geometry. Also, in thk
contribution, a general stability condition has been derived for the

WETD(@) method of which the central and backward differences

are special cases corresponding to @ = 1 and El = O, respectively.

I. INTRODUCTION

T HE finite difference time-domain (FDTD) [1] algorithm

has been used widely in solving the transient responses of

electromagnetic problems. However, in its original form, it is

difficult to model complex EM problems with curved surfaces

using the FDTD method. Many variants have been proposed

in the past with the aim to circumvent this difficulty with

varying degrees of success. Almost all of these approaches are

based upon, one form or the other, the use of finite difference

approximation in both spatial and temporal domains. It is the

purpose of this paper to show a finite element time domain

formulation, Whitney element time domain (WETD) method,

which uses Whitney l-forms in the spatial domain and the

finite difference in the time domain, respectively, for solving

Maxwell’s equations. In this way, the proposed WETD method

can be used on a tetrahedral finite element mesh and conse-

quently, it imposes no geometric limitations. Furthermore, in

this contribution, we also generalize the formulation by the @

method, will be described later, to a family of WETD methods

depending on the @ value. Therefore, the time step can always

be set with compatible resolution with its spatial counterparts,

i.e. ctit x Ax, by choosing a suitable @.

II. FAEDO-GALERIUN FORMULATION

In this paper, we consider the solution of Maxwell’s equa-

tions in space-time R4
+

Vxz=–pg
-+

vxl!i=Y+eg. (1)
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From these equations, an initial value problem can be derived

in terms of the electric field ~ as

.
iix E= Oon I’e

~xvx~=oonrh. (2)

The weak form, Galerkin form, of (2) is just

\ /
(3)

where 0 is a test function. To achieve a greater symmetry

between trial and test vector functions, we apply veetor

identities to result in

Consequently, the application of the Faedo-Galerkin procedhre

can be stated as following. Given an N-dimensional subspace

Sh c Ml, where MI = {U I ti, 87 G (L2)3}, the Galerkin prin-

ciple is to find a vector function fih (~ t) with the following

property: At each t >0, ~h lies in Sh and satisfies

1[ &Eh

1
~hotw+;(vxtih)o(vxih) dfl

!2

J

8JX
+ —--do = O,

‘h ‘ at
W#’ G Sh. (5)

n

Notice that the time variable is still continuous: The Faedo-

Galerkin formulation is discrete in the spatial variables and

yields a system of ordinary differential equations in time. To

make this formulation operational, we use the Whitney 1-forms

as the bases for the trial space Sh and expand the trial and

test vector functions as

where ei, @, are the circulation of the electric field and the

vector basis function associated with edge i. Also, in (6) we

have used the Einstein notation for the summation over index i.
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Finally, the optimal weights e’ are determined by the
Galerkin principle

Now we put the Galerkin equation into vector notation, with

2 as the coefficient vector, the result is

[T]
d2&
~ + Cz[s]t = –F

where

and the components of the right-hand-side are

(lo)

If there were inhomogeneous boundary conditions, time-

dependent or not, their effects would also appear in Y.

III. FINITE DIFFERENCES IN TIME

The ordinary differential equation in (8) typically can be

approximated by finite difference formulae in three ways:

forward difference, backward difference, and central differ-

ence. The forward difference formula when applies to (8)

becomes unconditionally unstable in the numerical implemen-

tation. Therefore, in this contribution, we will focus only

on the central, backward differences and their combinations.

Furthermore, to simplify the discussion here, we shall also

assume that 7 = O, however, the inclusion of .?_ in the final

formulation is straightforward and will not affect the main

concepts in this contribution.

A. Central Dt~erence

By applying the central difference to the time derivative in

(8), we obtain

[T]+ (:”+1 - 2&’n + :“-’) + c’[S]&” = O. (11)

The above equation can be rearranged to result in a matrix

equation which can be used to update the coefficient vector,

&, as

[7’]&+l = –[T]&l + (2[T] – C’titz[s]):n. (12)

As evidenced in (12), the updating of the electric field, for

each time step, requires solving a matrix equation of the form:

[T]x = y. (13)

The stability condition of this approach will be described later

as a special case in the @ method with (3 = 1.

B. Backward Difference

When the O.D.E. (8) is approximated by backward differ-

ence, the following equation is obtained:

[T]~(&”+l – 2tfn + En-l) + c2[S]tn+1 == O. (14)

Finally, the matrix equation that is used to update the coeffi-

cient vector, Sn+ 1, is written as

([T] + c26t’[S])&n+l = 2[2!’]8n - [T]:n-’. (15)

Like the central difference approach, for each time step the

backward difference approach also requires solving a matrix

equation of the form

([T] +c2fit2[S])r = y. (16)

However, as can be seen later, the algorithm results in an

unconditional- stable time marching numerical scheme.

C. G Method

It is well-known that the central difference will give second

order accuracy in time, and whereas, the backward differ-

ence will only be accurate upto first order. A general finite

difference scheme that we proposed here is based upon a

concept which is similar to the Generalized @method [3] for

solving parabolic equations. We multiply (12 by a real number,

O < @ < 1, and (15) by 1 – (3, and sum the two equations

together to form

{[T] +(1 - @)c26t2[S]}&n+l =

-[T]tY-l + {2[T] - ~c’fit’[s]}~n. (17)

From (17), we see that @ = O and (3 = 1 reduce to backward

and central difference schemes, respectively.

D. Stability Condition

Since the central and backward differences are special cases

of the El method, we will only derive the stability condition

for the 0 method in this section. By defining a growing factor

a as

~ = II~n+’II
IIEn11“ (18)

Then we say that a numerical scheme is stable if and only if

lim a <1. (19)
n+m

From (17), it can be shown that the @ method will be stable

if and only if the following condition holds

p({2[T] -@c26t2[S]}2) < 4p([T]{[T]+(l - @)c26t2[S]})

(20)
where p(A) is the spectral radius of the matrix A. Finally,

with algebraic operations, the final stability condition can be

deduced as

(21)
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Fig. 1. The FFT of the time signal for a rectangular cavity with dimensions
2mx3mx4m.

where A~in and A:u are the minimum and the maximum

eigenvalues of matrices {2’] and [S], respectively. Moreover,

we have

A:in _ 1
=–— K,max

(22)

where R is the maximum eigenvalue of the following gener-

alized eigenmatrix equation:

[S]z = K[T]Z. (23)

In practice, (23) can be solved efficiently by using Lanczos

algorithm [4].

TABLE I
RESONANT FREQUENCIES OF THE FIRST THREE MODES

Resonant frequencies (MHz)

Exact WETD(l.0)

62.5 62.07407 —

83.853 82.59259

90.139 88.74074

IV. NUMERICAL RESULTS

A simple rectangular cavity with dimensions 2 m x 3 m x

4 m has been studied by using the WETD method presented in

this contribution. The cavity is first discretized into tetrahedral

with typical element size corresponds to h = 0.25 m.

The numerical algorithm starts by assigning a divergence-

free excitation with a Gaussian distribution of the form

exp —((t — 50) /o)2 for the electric field. The constant o

is chosen as o = l/(m~) and ~ = 500 MHz. The numerical

experiment has been conducted using @ = 1, and time step

is calculated as

It took 12035 CPU time to run for 10000 time steps on a

HP 735 workstation. The FFT of the time signal obtained at

a certain observation point is shown in Fig. 1. The resonant

frequencies of the first three modes compared to the exact

solutions is given in Table I. Good agreements are obtained.
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