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WETD—A Finite Element Time—Domain
Approach for Solving Maxwell’s Equations

Jin-Fa Lee, Member, IEEE

Abstract— A family of finite element time-domain methods,
WETD(©), is derived to solve the time-varying Maxwell’s equa-
tions. The proposed methodology is based upon the application of
the Faedo-Galerkin procedure and the use of the Whitney 1-forms
as bases to result in an ordinary differential equation in time for
the electric field. Moreover, the resultant ordinary differential
equation is solved by employing central and/or backward differ-
‘ence approximations. Since the WETD methods presented here
are used in conjunction with tetrahedral finite element meshes,
it imposes no limitations on the problem geometry. Also, in this
contribution, a general stability condition has been derived for the
WETD(©) method of which the central and backward differences
are special cases corresponding to © = 1 and © = 0, respectively.

I. INTRODUCTION

HE finite difference time-domain (FDTD) [1] algorithm

has been used widely in solving the transient responses of
electromagnetic problems. However, in its original form, it is
difficult to model complex EM problems with curved surfaces
using the FDTD method. Many variants have been proposed
in the past with the aim to circumvent this difficulty with
varying degrees of success. Almost all of these approaches are
based upon, one form or the other, the use of finite difference
approximation in both spatial and temporal domains. It is the
purpose of this paper to show a finite element time domain
formulation, Whitney element time domain (WETD) method,
which uses Whitney 1-forms in the spatial domain and the
finite difference in the time domain, respectively, for solving
Maxwell’s equations. In this way, the proposed WETD method
can be used on a tetrahedral finite element mesh and conse-
quently, it imposes no geometric limitations. Furthermore, in
this contribution, we also generalize the formulation by the ©
method, will be described later, to a family of WETD methods
depending on the © value. Therefore, the time step can always
be set with compatible resolution with its spatial counterparts,
i.e. ¢dt =~ Az, by choosing a suitable ©.

II. FAEDO-GALERKIN FORMULATION

In this paper, we consider the solution of Maxwell’s equa-
tions in space-time R*

. o0H
E=—p"-
V X Mat
. . OF
VxH= —_—. 1
X J+€6t ¢9)

Manuscript received August 24, 1993.

This work was supported by Engineering Foundation Grant RI-A-92-10.

The author is with the ECE Department, Worcester Polytechnic Institute,
Worcester, MA 01609,

IEEE Log Number 9214843.

From these equations, an initial value problem can be derived
in terms of the electric field E as
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The weak form, Galerkin form, of (2) is just
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where ¥ is a test function. To achieve a greater symmetry
between trial and test vector functions, we apply vector
identities to result in
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Consequently, the application of the Faedo-Galerkin procedure

can be stated as following. Given an N-dimensional subspace

Sh ¢ H*, where H! = {¥'| 7,07 € (L?)*}, the Galerkin prin-

ciple is to find a vector function EM(#t) with the following

property: At each ¢ > 0, E™ lies in " and satisfies
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Notice that the time variable is still continuous: The Faedo-
Galerkin formulation is discrete in the spatial variables and
yields a system of ordinary differential equations in time. To
make this formulation operational, we use the Whitney 1-forms
as the bases for the trial space S* and expand the trial and
test vector functions as
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dQ =0, vt e Sh.(5)

EM (R t) = Wi(7) SH(¢) ‘ )

where €°, VT/L are the circulation of the electric field and the
vector basis function associated with edge 4. Also, in (6) we
have used the Einstein notation for the summation over index .

1051-8207/94$04.00 © 1994 IEEE



12 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 4, NO 1, JANUARY 1994

Finally, the optimal weights e’ are determined by the
Galerkin principle
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Now we put the Galerkin equation into vector notation, with
£ as the coefficient vector, the result is
d*e

where
7], = /Q (W7 0 W) d2
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and the components of the right-hand-side are
.8
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Q ot

If there were inhomogeneous boundary conditions, time-
dependent or not, their effects would also appear in F.

(10)

III. FINITE DIFFERENCES IN TIME

The ordinary differential equation in (8) typically can be
approximated by finite difference formulae in three ways:
forward difference, backward difference, and central differ-
ence. The forward difference formula when applies to (8)
becomes unconditionally unstable in the numerical implemen-
tation. Therefore, in this contribution, we will focus only
on the central, backward differences and their combinations.
Furthermore, to simplify the discussion here, we shall also
assume that 7 = 0, however, the inclusion of F in the final
formulation is straightforward and will not affect the main
concepts in this contribution.

A. Central Difference

By applying the central difference to the time derivative in
(8), we obtain

1] — (€71 — 26 + £7=1) 1 [S]E™ = 0.

= (11)

The above equation can be rearranged to result in a matrix
equation which can be used to update the coefficient vector,
£, as

[T]E™ ! = —[T]E™1 + (2[T] — 26t3[S]) e (12)

As evidenced in (12), the updating of the electric field, for
each time step, requires solving a matrix equation of the form:

Tz = y. (13)

The stability condition of this approach will be described later
as a special case in the ® method with © = 1.

B. Backward Difference
When the O.D.E. (8) is approximated by backward differ-
ence, the following equation is obtained:

1
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Finally, the matrix equation that is used to update the coeffi-
cient vector, £7F1, is written as

(II] + P62[S])ent = 2[T)E™ — [T]E™ .

[T]— (M —26m +em N + 2[S]entt =0, (14)

(15)

Like the central difference approach, for each time step the
backward difference approach also requires solving a matrix
equation of the form

([T + 26t2(S])r = y. (16)

However, as can be seen later, the algorithm results in an
unconditional-stable time marching numerical scheme.

C. © Method

It is well-known that the central difference will give second
order accuracy in time, and whereas, the backward differ-
ence will only be accurate upto first order. A general finite
difference scheme that we proposed here is based upon a
concept which is similar to the Generalized ©®method [3] for
solving parabolic equations. We multiply (12 by a real number,
0 <® <1, and (15) by 1 — 0, and sum the two equations
together to form

{[T]+ (1 — ©)c*62[S]} €™ =

—[T]E" + {2[T] — ©>5°[S]}Em. a7)

From (17), we see that ©® = 0 and © = 1 reduce to backward
and central difference schemes, respectively.

D. Stability Condition

Since the central and backward differences are special cases
of the ® method, we will only derive the stability condition
for the © method in this section. By defining a growing factor
o as

ey
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Then we say that a numerical scheme is stable if and only if

lim a < 1.
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From (17), it can be shown that the © method will be stable
if and only if the following condition holds

o({20m1-0c%s2(81}") < 4p(ITI{[T1+(1 - ©)2i%(5])})

(20)
where p(A) is the spectral radius of the matrix A. Finally,
with algebraic operations, the final stability condition can be
deduced as

(19)
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WETD -Theta=1
Rectangular Cavity - 2m x3m x 4m
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Fig. 1. The FFT of the time signal for a rectangular cavity with dimensions
2mx3mx4m

where AL, and A3, are the minimum and the maximum
eigenvalues of matrices [T'] and [S], respectively. Moreover,
we have

AL 1

gnm = 22)

)‘max Kmax
where x is the maximum eigenvalue of the following gener-
alized eigenmatrix equation:

[Slz = &[T)z.

(23)

In practice, (23) can be solved efficiently by using Lanczos
algorithm [4].

TABLE I
RESONANT FREQUENCIES OF THE FIRST THREE MODES

Resonant frequencies (MHz)

Exact WETD(1.0)

62.5 62.07 407
83.853 82.59 259
90.139 88.74 074

IV. NUMERICAL RESULTS

A simple rectangular cavity with dimensions 2 m x 3 m x
4 m has been studied by using the WETD method presented in
this contribution. The cavity is first discretized into tetrahedra
with typical element size corresponds to A = 0.25 m.
The numerical algorithm starts by assigning a divergence-
free excitation with a Gaussian distribution of the form
exp —((t — 50)/0)? for the electric field. The constant o
is chosen as ¢ = 1/(wf) and f = 500 MHz. The numerical
experiment has been conducted using ® = 1, and time step
is calculated as

T
et = 12, | Zin  .06200. @4

max

It took 12 035 CPU time to run for 10 000 time steps on a
HP 735 workstation. The FFT of the time signal obtained at
a certain observation point is shown in Fig. 1. The resonant
frequencies of the first three modes compared to the exact
solutions is given in Table I. Good agreements are obtained.
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